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Cnoidal waves are a type of nonlinear periodic wave solutions of the nonlinear dynamic equations. They are well
known in fluid dynamics, but it is not the case in optics. In this paper we show both experimentally and numeri-
cally that cnoidal waves could be formed in a fiber laser either in the net normal or net anomalous cavity
dispersion regime, especially because, as the pump power is increased, the formed cnoidal waves could eventually
evolve into a train of bright (in the net anomalous cavity dispersion regime) or dark (in the net normal cavity
dispersion regime) solitons. Numerical simulations of the laser operation based on the extended nonlinear
Schrödinger equation (NLSE) have well reproduced the experimental observations. The result not only explains
why solitons can still be formed in a fiber laser even without mode locking but also suggests a new effective way of
automatic stable periodic pulse train generation in lasers with a nonlinear cavity. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.508144

1. INTRODUCTION

Periodic wave solutions have been found to exist in different
nonlinear dynamic equations [1–11]. In solid state physics, such
periodic nonlinear wave structures are known as Bloch waves
that are reproduced self-consistently from crystal cell to cell.
While the use of “Bloch waves” emphasizes the nature of lat-
tice-periodically modulated plane waves in condensed matter,
“cnoidal waves” are a more generally used nomenclature that
connects the solutions to a large body of work on periodic wave
structures in fluids, plasmas, and optics. Examples in optics in-
clude light propagation in micro-resonators and optical fibers. In
the micro-resonator community, such periodic wave structures
are also referred to as “turning rolls” that are governed by the
Lugiato–Lefever equation (LLE) [12–14]. In optical fibers, such
stationary periodic patterns are referred to as cnoidal waves that
are described by the nonlinear Schrödinger equation (NLSE)
[15]. In the NLSE approximation, while solitons are analytically
expressed in terms of hyperbolic-secant [sech�x�] and tangent
[tanh�x�] functions, cnoidal waves are expressed in terms of
Jacobi elliptic functions [cn�x�, sn�x�, dn�x�] [16–19].

To date, the literature on cnoidal waves in fluids is extensive,
but this is not the case in optics, except a few theoretical and/or
numerical studies [20–22]. Among the various real physical sys-
tems, fiber lasers are routinely used as a platform for investigat-
ing complex nonlinear wave dynamics. Although a laser is
intrinsically a dissipative system whose dynamics should be de-
scribed by the extended Ginzburg–Landau equation (GLE),

under steady state laser operation, the laser gain is always bal-
anced by the cavity losses; furthermore, if the effect of gain
bandwidth limitation could be neglected, the GLE is reduced
to the NLSE [23]. Hence the light propagation in a fiber laser
could mimic those of the NLSE dynamics, which justifies that
under certain laser operation conditions NLSE solitons and
cnoidal waves could be formed in a fiber laser. Both solitons
and cnoidal waves of the NLSE are created by a balance be-
tween nonlinearity and dispersion. While soliton formation in
fiber lasers has been experimentally extensively investigated, to
the best of our knowledge, there has been no report on the
experimental observation of cnoidal waves in a fiber laser.
Physically, cnoidal waves bridge the gap between the CW and
soliton states of a nonlinear system. In order to gain a compre-
hensive understanding on the dynamics of a fiber laser, it is
important to study the properties and features of the cnoidal
waves formed in it. In this work, we experimentally and nu-
merically investigate the accessibility and stability of cnoidal
waves in a single mode fiber laser either with net normal or
net anomalous cavity dispersion. We show that compared to
the formation of solitons, cnoidal waves, represented as a static
periodic pulse train pattern in the laser cavity, can also be ac-
cessed in a fiber laser. It is interesting to note that stable periodic
pulse patterns can also be frequently observed in mode-locked
lasers through harmonic mode locking (HML) [24–28].
However, their formation mechanisms contrast starkly. In the
scenario of HML, such periodic pulse trains are formed as a
result of linear superposition of cavity modes. This is a process
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that can be described by the conventional mode-locking theory,
while the formation of cnoidal waves here could be viewed as a
result of nonlinear light propagation in the fiber cavity. In this
case the cavity modes are mutually coupled, and consequently
the total optical field becomes synchronized with the cavity and
behaves as a “super” nonlinear cavity mode, or in other words,
becomes a periodic wave solution of the NLSE. A typical char-
acteristic of the cnoidal waves is that in the limit of strong
localization, the periodic pulses transform into bright/dark sol-
itons. A similar feature is observed on the periodic waves
formed in our fiber laser. Experimentally, as the pump power
is increased, which corresponds to the increasing cavity nonlin-
earity, the periodic pulse trains evolve into periodic trains of
solitons, corresponding to a frequency comb with increased
power. The evolution of the state with the cavity nonlinearity
could be illustrated as in Fig. 1. Different from the HML gen-
erated pulse patterns that always have typical narrow pulse
widths, for instance, in the range of picoseconds in most cases,
depending on the strength of the cavity nonlinearity, the peri-
odic pulses in a cnoidal wave state could have pulse widths
ranging from tens of nanoseconds to several picoseconds. A
cnoidal wave state can be easily accessed in a fiber laser and
could have any periodicity. This variability of the cnoidal wave
states formed in a fiber laser is their great advantage compared
to the traditional mode-locked pulses. Thus, the results not
only provide a new approach to optically control the repetition
rate and shape of nonlinear pulses but also assist in understand-
ing the complexity in nonlinear science.

2. RESULTS

A. Experimental Setup
In our experiments, we perform time- and frequency-resolved
measurements with a high-speed detection system consisting of
a 40 GHz photodetector, a 33 GHz bandwidth real-time
oscilloscope, and an optical spectrum analyzer. A schematic
of the experimental setup is depicted in Fig. 2. All the fiber-
pigtailed components (ISO, WDM, OC) used in the cavity
are specially selected so that they have negligible polarization
dependent loss and their functions are polarization indepen-
dent; therefore, no conventional mode locking process could
occur in our experimental setup. In this work, we prove that
even without any mode-locking elements or external modula-
tors, a simple fiber ring laser can still work as a flexible platform
for the generation of a family of periodic nonlinear waves.
Furthermore, by virtue of a careful management of the cavity
nonlinearity and dispersion, we could investigate the formation

of cnoidal waves and their soliton limits in both the normal and
anomalous cavity dispersion regimes.

B. Cnoidal Waves in Anomalous Cavity Dispersion
Regime
For demonstrating the existence of cnoidal waves, we construct
the fiber ring cavity with 3 m EDF, 12 m SMF, 0 m DCF;
thus, the net averaged cavity dispersion is tuned in the anoma-
lous GVD regime, i.e., β2,ave � −6.1 ps2∕km. We emphasize
that except the polarization controller (PC), which is used to
fine adjust the cavity conditions, such as cavity nonlinearity and
cavity detuning, no other polarization selective components or
any saturable absorbers exist in our fiber laser. As all the intra-
cavity components are polarization independent, no nonlinear
polarization rotation (NPR) mode locking could occur in the
laser. It is worth having a brief explanation on the functions of
the intracavity PC. Through fine tuning the orientations of the
PC paddles the effective intracavity birefringence would be
changed, and consequently not only the laser oscillation wave-
length but also the intracavity light power could be changed.
Experimentally, through appropriately setting the intracavity

Fig. 1. Evolution of an NLSE cnoidal wave in a ring fiber cavity.
Color gradient indicates the increase of cavity nonlinearity. (a) A cnoi-
dal wave at low cavity nonlinearity. (b) A cnoidal wave at the soliton
limit. (c) Particle-like freely running solitons.

Fig. 2. Schematic of the experimental setup. The pump source is a
1480 nm Raman fiber laser. It has a maximum output power of
5 W. EDF, erbium-doped fiber (OFS-EDF80) with a group velocity
dispersion (GVD) coefficient of β2 � 61.87 ps2∕km; DCF, disper-
sion compensation fiber with a group velocity dispersion
coefficient of β2 � 5.1 ps2∕km; SMF, single mode fiber (SMF-28)
with a group velocity dispersion coefficient of β2 � −21.94 ps2∕km;
PI-ISO, polarization independent isolator;WDM, wavelength division
multiplexer; OC, output coupler; BS, beam splitter; PD, photodetec-
tor; PC, polarization controller; OSC, oscilloscope; OSA, optical
spectrum analyzer.
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PC, we could even achieve multi-wavelength oscillation of our
fiber laser.

We first operate our laser in the relatively low nonlinearity
regime by injecting a relatively low pump power of 20 dBm. In
all our experiments, under weak nonlinearities, the laser always
displays CW emission. As we slowly increase the pump power
to 22 dBm, a kind of periodic wave pattern with a period of
T � 50 ps is obtained as shown in Fig. 3(a1). Once it is
formed, the periodic pattern remains static in the cavity as
shown in Fig. 4. Figure 3(a2) is the corresponding spectrum
of Fig. 3(a1). Starting from such a state, if we slowly vary
the intracavity PC paddles, other periodic wave emission states
could also be obtained, as shown in Fig. 3(b1) (periodic wave
with a period T � 33 ps) and in Fig. 3(c) (periodic wave with a
period T � 4 ns). Operating in the low nonlinearity regime,
the optical spectrum of the laser has a narrow band (−3 dB
bandwidth is measured as ∼4 nm), and no Kelly sidebands
are observed as indicated in the spectra shown in Figs. 3(a2)
and 3(b2). From a state as shown in Fig. 3(a1), if the pump
intensity is further increased to 24 dBm, the periodic wave then
evolves into a state as shown in Fig. 5. The pulse train is still
static in the cavity and remains the same pulse repetition rate as
before, as shown in Fig. 5(a) (state measured at t � 0 s) and
Fig. 5(b) (state measured at t � 120 s). However, with the in-
crease in intracavity power, each peak of the periodic waves is
obviously narrowed, as shown in Fig. 5(c). We experimentally

measured the autocorrelation trace of the pulses. It has a pulse
width of 8 ps assuming a sech2 pulse shape. Figure 5(d) shows
the spectrum of the state. It is clearly broadened compared to
that shown in Fig. 3(a2), meanwhile, a weak Kelly sideband,
marked by the arrow S1, also appears on the spectrum. Kelly
sidebands are formed as a result of interference between the
solitons and dispersive waves in a laser, which is a unique char-
acteristic of the soliton operation of a laser [29]. The appear-
ance of such a weak Kelly sideband on the spectrum suggests
that the obtained periodic pulses are approaching the soliton
limit. We emphasize that despite the fact that the pulses already
exhibit some of the soliton characteristics, i.e., broad spectral
bandwidth and weak Kelly sidebands, they are not the
NLSE type of particle-like solitons yet as they are static in
the cavity. The experimentally observed evolution of the peri-
odic pulses with the intracavity power (Fig. 4 to Fig. 5) is also
verified by the numerical simulations shown in Figs. 6 and 7
(more details on the simulation model can be found in
Ref. [23]). Figures 6(a)–6(f ) show the formation of cnoidal

Fig. 3. Experimental results on formation of cnoidal waves with dif-
ferent periods in net anomalous dispersion regime. (a1) Oscilloscope
trace of a cnoidal wave with period T � 50 ps. (a2) Corresponding
optical spectrum for (a1). (b1) Oscilloscope trace of a cnoidal wave
with period T � 33 ps. (b2) Corresponding optical spectrum for
(b1). (c) Oscilloscope trace of a cnoidal wave with period T � 4 ns.

Fig. 4. Experimental results on evolution of the cnoidal wave with
period T � 50 ps over 20 cavity roundtrips.

Fig. 5. Experimental results on soliton limit of cnoidal waves in net
anomalous cavity dispersion regime. (a) Evolution of a periodic pulse
train with period T � 50 psmeasured at t � 0 s. (b) Evolution of the
same periodic pulse train measured at t � 120 s. (c) A train of bright
pulses with a typical pulse width around several picoseconds. (d) The
corresponding optical spectrum of (c).
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waves with different periodicities (from 20 GHz to 5 GHz) in
the net anomalous dispersion regime, and Fig. 6(g) is the op-
tical spectrum for the case shown in Fig. 6(a). The spectrum
shows obvious frequency comb, whose frequency separation
matches well with the pulse repetition rate of the cnoidal wave.
It is notable that limited by the resolution of our optical spec-
trum analyzer, only the envelope of the frequency comb could
be visualized on the measured optical spectra of the cnoidal
waves. Numerically we found that the cnoidal wave patterns
could remain stable in the cavity even at weak nonlinearities,
for instance, in all the three cases, the gain coefficient

g0 � 50 km−1. Starting from a state as shown in Fig. 6(a),
if we increase the intracavity power, the cnoidal wave pulses
become narrower and narrower, and eventually at a gain coef-
ficient g0 � 80 km−1, they evolve into a train of bright pulses.
However, in all states the period of the pulses remains the same
as shown in Fig. 7. The result is in good agreement with the
experimental observations as shown in Figs. 4 and 5.

Experimentally, starting from a state as shown in Fig. 5, if we
keep increasing the pump intensity to 27 dBm, the periodic
pulses will finally evolve into the NLSE solitons, characterized
by their obvious particle-like features; for instance, instead of
remaining static, they start to move in the cavity as shown in
Fig. 8(a) (soliton patterns measured at t � 0 s) and Fig. 8(b)
(soliton patterns measured in the same time window but at
t � 120 s). In addition, other signatures of a traditional NLSE
soliton, e.g., the significant spectral broadening, and strong
Kelly sidebands are also observed on the pulses as shown in
Fig. 8(c). The solitons are randomly distributed in the cavity,
meanwhile, undergoing collisions with each other. The exhib-
ited features of the observed periodic waves are well in agree-
ment with those of the cnoidal waves of the NLSE, as
illustrated in Fig. 1. We emphasize that the above feature of
the fiber laser is independent of the concrete cavity parameters
such as cavity length, effective dispersion, and birefringence,
and once the laser operation condition is appropriately set,
it always occurs, suggesting that it is an intrinsic feature of
the system.

We note that although periodic pulse trains could also be
generated in a fiber through the modulation instability (MI)
effect [30], the underlying formation mechanism and features
of the formed pulse trains are starkly differed from those de-
scribed above. Physically, modulation instability is essentially
a four-wave mixing process where the Fermi-Pasta-Ulam
(FPU) recurrence [31] always occurs. As a result, the pulse
trains generated by the MI process exhibit pulse breather struc-
tures [32]. In addition, in a standard single mode fiber, deter-
mined by the fiber parameters, the modulation frequency of the

Fig. 6. Simulation results on formation of cnoidal waves with
different period with net anomalous cavity dispersion. Parameters
used in the simulation: A�0.01; β2u,ave � −6.1 ps2∕km;
g � g0∕�1�

R �juj2 � jvj2�dt∕Es �; g0 � 50 km−1;Es � 1 pJ; γ �
3 W−1 km−1. (a), (b) Stable formation of a cnoidal wave with period
T � 50 ps; (c), (d) stable formation of a cnoidal wave with
period T � 100 ps; (e), (f ) stable formation of a cnoidal wave with
period T � 200 ps. (g) Simulated optical spectrum for the cnoidal
wave shown in (a).

Fig. 7. Simulation result on a periodic bright pulse train formation.
Except g0 � 80 km−1, the other parameters used are the same as those
for Fig. 6(a).

Fig. 8. Experimental results on a state with freely moving particle-
like solitons. (a) Evolution of a soliton pattern measured at t � 0 s.
(b) Evolution of a soliton pattern in the same time window but mea-
sured at t � 120 s. (c) The corresponding optical spectrum of (a).
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MI is generally around hundreds of GHz, and the modulation
frequency changes with the light intensity. Cnoidal waves are
stationary eigenstate solutions of the nonlinear dynamic equa-
tions. In the framework of light propagation in single mode
fibers, they can be interpreted as stationary periodic solutions
of the cn and dn forms for the case of anomalous fiber
dispersion and sn form for the case of normal fiber dispersion.
The periodic pulse trains caused by the cnoidal waves exhibit
no breather structures. In fact, MI is a general effect of non-
linear light propagation in anomalous dispersion fibers. Both
theoretical and experimental studies have also shown that even
the cn- and dn-types of cnoidal waves could become unstable
due to occurrence of the MI [33].

Despite the fact that cnoidal waves are eigenstate solutions
of the NLSE, in the practice it is difficult to generate automati-
cally such a wave in a fiber transmission line. The situation is
very different in the case of light propagation in a fiber ring
laser. In a fiber laser the light is actually circulating in a cavity,
where the cavity boundary condition should always be fulfilled
[34,35], namely En�1�Z � 0, t� � ρ exp�−iϕ�En�Z � L, t�,
where E is the complex envelope of the optical field, n denotes
the nth passage through the cavity, and Z and t are the distance
parameter and retarded time in a reference frame. L is the cavity
length, and ρ and ϕ are the amplitude reflection and linear
phase delay of the light generated after one roundtrip in the
cavity. Previously it has been shown that light circulation in
a detuned cavity could lead to the cavity-induced modulation
instability (CIMI) [35,36], and such an MI effect has a much
lower threshold than the conventional MI. CIMI could easily
occur and destabilize the CW emission of a fiber laser, gener-
ating a weak periodic intensity modulation on the laser emis-
sion. As in the steady state laser operation, the optical field must
be resonant with the laser cavity. Therefore, the cavity boun-
dary condition naturally imposes a periodic condition on the
laser oscillation, forcing the formation of cnoidal waves in a
laser in the nonlinear regime. As the modulation frequency
of CIMI varies with the cavity detuning, therefore, the formed
cnoidal waves could have any periodicity, e.g., in our experi-
ments, we have obtained stable periodic pulse trains with pulse
repetition rate changed from hundreds of MHz to tens or even
hundreds of GHz. As the observed periodic pulses are a cnoidal
wave in nature, as we further increase the light intensity, the
period of the pulse trains no longer changes. Increasing light
intensity only modifies the energy localization parameter,
and eventually, the pulses are shaped into their soliton limits
(e.g., a train of soliton pulses with the same period as the cnoi-
dal wave). The observed experimental results match well with
the theoretical predictions in Refs. [16–19], suggesting that the
experimentally obtained periodic pulse trains are indeed the
cnoidal waves formed in the fiber laser. To the best of our
knowledge, this is also the first clear experimental evidence
on the cnoidal wave emission of a laser.

In most cases, a fiber laser could support multi-wavelength
oscillations [37]. A typical optical spectrum of a dual-wave-
length laser emission state is shown in Fig. 9, where similar
to the case of Fig. 5(d), the central wavelength of a cnoidal wave
(marked by blue dashed line in Fig. 9) is still centered at
1588 nm; in addition, through slightly varying the intracavity

PC paddles, another laser oscillation with a central wavelength
of 1575 nm (marked by green dashed line in Fig. 9) also
appears. The two components coexist in the same cavity
and interact with each other. As a result of their incoherent
interaction, a kind of dual-wavelength domain structure is
formed [38,39] as shown in Fig. 10(a), marked by the red solid
line. We emphasize that the formation of the domains does not

Fig. 9. Typical optical spectrum of dual-wavelength emission.

Fig. 10. Evolution of cnoidal waves in the case where the periodic
boundary condition is redefined by the dual-wavelength domain walls.
(a) Formation of a cnoidal wave within a wavelength domain.
(b) Pulses on the right-hand side of the domain are shaped into sol-
itons and run out of the domain. (c) Solitons fill up the whole laser
cavity.
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affect the formation of cnoidal waves, for instance, a periodic
pulse train is still formed inside one domain region in the cavity,
as shown in Fig. 10(a). Such a domain state was shown to be a
solution of the cubic CGL equation [40,41]. Initially, the cnoi-
dal wave is only formed in one domain, and the pulses are static
in the domain. However, as we slowly increase the pump in-
tensity from 22 dBm to 27 dBm, the pulses eventually start to
run out of the domain, indicating that they are no longer
bound to the other pulses but become a free NLSE soliton, as
shown in Fig. 10(b). Finally, the solitons fill up the whole cavity
as shown in Fig. 10(c). Note that the same process of cnoidal
wave evolution is observed in the previous section (from
Figs. 3–5). The only difference is that in previous cases, the
periodic boundary is defined by the whole cavity length, but
here it is redefined by the potential walls of the domains.
The appearance of cnoidal waves in the domains could provide
us with additional degrees of freedom to fine adjust the proper-
ties of the pulse trains, such as their duty-cycles. This could
benefit their applications in fields of optical communication
and ultrafast lasers.

In the NLSE approximation, not only the periodic cnoidal
wave solutions could be supported; another special group of
solutions, namely, “soliton on a cnoidal wave background”
can also be supported [42]. We have also experimentally veri-
fied such a structure as shown in Fig. 11. In fact, the result of
“soliton on a cnoidal wave background” could be interpreted as
a case where a soliton and a cnoidal wave coexist in the system.
Specifically, in the state shown in Fig. 11, bright solitons are
formed on one of the laser oscillations whose central wave-
length is λ1, meanwhile, a cnoidal wave is formed on another
laser oscillation whose central wavelength is λ2. Because the ef-
fective laser gain at λ1 is much larger than that at λ2, solitons are
formed at λ1 due to the strong energy localization, while only
the cnoidal wave is formed at λ2. The formed solitons and cnoi-
dal wave have different velocities as they have different central
wavelengths, so it looks like that multiple bright solitons are
riding on a noise background if the solitons are used as the
oscilloscope trigger, as shown in Figs. 11(a) and 11(c).
However, when we trigger the oscilloscope trace with the cnoi-
dal wave background, its cnoidal wave feature becomes clear. It
will show a periodic pulse pattern static in the cavity, as shown
in Fig. 11(b), which matches well with the theoretical predic-
tions in Ref. [42]. The inset of Fig. 11(c) shows a magnified
view of the periodic cnoidal wave background, which has a
period of around 63 ps. This result once again demonstrates
that an appropriately designed fiber laser could be an ideal non-
linear testbed for the experimental studies of a large family of
nonlinear wave solutions of the NLSE.

C. Cnoidal Waves in Net Normal Cavity Dispersion
Regime
Experimentally, we also perform studies on cnoidal waves by
operating the fiber laser at net normal cavity dispersion regime
by selecting 3 m EDF, 5 m SMF, and 9 m DCF, and the aver-
aged net cavity dispersion is therefore selected as β2,ave �
6.58 ps2∕km. We first operate the laser in low nonlinearity
regime by injecting a weak pump power of 23 dBm and obtain
stable formation of cnoidal waves with two different periods,
e.g., T 1 � 2.5 ns, T 2 � 4 ns as shown in Fig. 12(a) and

Fig. 12(c), respectively. Figures 12(b) and 12(d) are the
corresponding optical spectrum for Figs. 12(a) and 12(c), re-
spectively. Two broad spectral sidebands are observable on
the spectra (marked by arrows S1 and S2), and they were caused
by the periodic power variation of the laser beam in the cavity
[43]. They are not the Kelly sidebands.

Similar to the evolution of the cnoidal waves formed in the
net anomalous dispersion regime, as we slowly increase the in-
tracavity power by increasing the pump power from 23 dBm to
28 dBm, each pulse of the cnoidal waves as shown in Fig. 12(a)
is narrowed; however, instead of transforming the pulses into a
train of bright pulses, they are transformed into a train of dark
pulses with typical pulse width around hundreds of picoseconds
as shown in Fig. 13. Starting from such a soliton limit state, if
we continue to increase the pump power to 30 dBm, the peri-
odic dark pulses could finally be transformed into a train of
black solitons with typical pulse width around several picosec-
onds. Nonetheless, it is important to note that the narrowest
accessible pulse width is also limited by the net cavity
dispersion; for instance, at large cavity dispersion, the narrowest
pulse width obtainable is normally around hundreds of

Fig. 11. Evolution of cnoidal waves in the case where the periodic
boundary condition is redefined by the dual-wavelength domain walls.
(a) Formation of a cnoidal wave within a wavelength domain.
(b) Pulses on the right-hand side of the domain are shaped into sol-
itons and run out of the domain. (c) Solitons fill up the whole laser
cavity.
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picoseconds. In this scenario, further increasing pump intensity
will result in dark pulse splitting instead of continuous narrow-
ing of the pulse width [44].

To collaborate the experimental observations, we also nu-
merically investigate the cnoidal wave formation and their sol-
iton limit in the net normal cavity dispersion regime. Again,
our simulations are based on our fiber laser cavity configuration
of 3 m EDF, 5 m SMF, and 12 m DCF, thus an averaged net
cavity dispersion of β2u,ave � 6.1 ps2∕km. It is interesting that
in the normal dispersion regime, cnoidal wave structures can
also be stably formed under weak cavity nonlinearity as shown
in Fig. 14(a). Starting from a cnoidal wave state, as we increase
the intracavity power by increasing the gain coefficient, the
peaks of the cnoidal wave narrow down. To a gain coefficient
g0 � 100 km−1, the cnoidal wave then evolves into a train of
dark pulses, instead of bright pulses, as shown in Fig. 14(d).
Figure 14(e) is the optical spectrum of the cnoidal wave state
shown in Fig. 14(a). Again, the separation between the comb
frequencies matches well with the repetition rate of the cnoidal
wave pulses. This evolution of the cnoidal waves with the gain
coefficient increase is again in good agreement with the
experimental observations shown in Fig. 13. It is notable that

experimentally either from the state shown in Fig. 5 or in
Fig. 13, if the intracavity power is continuously increased,
the cnoidal wave pulses would be transformed into the par-
ticle-like bright solitons (in anomalous fiber dispersion regime)
or dark solitons (in anomalous fiber dispersion regime).
Thereafter, they behave following the NLSE soliton theorem.
Since the generation of ultrashort dark solitons is still a chal-
lenging task in many real-world physical systems, the presented
method of dark soliton formation could be a superior alterna-
tive to the other method with the advantage of controllable
dark pulse width in a wide range.

3. CONCLUSION

Obviously, independent of the sign of the net cavity dispersion,
under suitable laser operation conditions, cnoidal waves can be
easily formed in a fiber laser, and as the cavity nonlinearity in-
creases, they could evolve into the soliton limit and even to the
NLSE soliton regime. We note that although a cnoidal wave
with strong energy localization could look very similar to an
HML state frequently observed in a mode locked soliton fiber
laser, they are two different states. A cnoidal wave state is a sta-
tionary periodic solution of the NLSE; in the state all the pulses
in the cavity are mutually coupled, and therefore, they are static
in the cavity or in the domains, while the solitons in an HML
state are not mutually coupled. In agreement with the theoreti-
cal predictions, both cnoidal waves and solitons are stable sol-
utions to the NLSE under different strength of nonlinearities.
In our experiments, we have demonstrated an evolution route
between the two states. This result also explains why periodic

Fig. 12. Experimental results on formation of cnoidal waves with
different periods in net normal dispersion regime. (a) Oscilloscope
trace of a cnoidal wave with period T � 2.5 ns. (b) The correspond-
ing optical spectrum of (a). (c) Oscilloscope trace of a cnoidal wave
with period T � 4 ns. (d) The corresponding optical spectrum of (c).

Fig. 13. Experimental results on the soliton limit of cnoidal waves
in the net normal cavity dispersion regime. (a) A train of periodic dark
pulses with a typical pulse width around hundreds of picoseconds.
(b) The corresponding optical spectrum of (a).

Fig. 14. Simulation results on the formation of cnoidal waves in the
net normal cavity dispersion regime. Parameters used in the simula-
tions: A � 0.01; β2u,ave � 5.1 ps2∕km; g � g0∕�1�

R �juj2 �
jvj2�dt∕Es �;Es � 1 pJ; γ � 3 W−1 km−1. (a) Evolution of a cnoidal
wave with period T � 1 ns and T � 1 ns and g0 � 50 km−1. (b) A
cnoidal wave pattern observed at the last cavity round trip of 10,000 in
(a). (c) Evolution of a cnoidal wave to a train of dark pulses, T � 1 ns
and g0 � 100 km−1. (d) Dark pulse pattern observed at the last cavity
round trip of 10,000 in (c). (e) Simulated optical spectrum for the
cnoidal wave state shown in (a).
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pulse trains and NLSE solitons could still be obtained in a fiber
laser, even without a saturable absorber or a mode-locker in the
cavity. Thus, our finding provides a new approach for generat-
ing stable periodic optical pulse trains and optically controlling
the periods and shapes of the optical pulses in a wide range.
This technique could not only have impact on ultrafast lasers
but also on other areas in which these features are crucial, such
as broadband frequency combs [45], supercontinuum genera-
tion [46], and on-chip high-energy pulses for new applications
in integrated photonics [47].

Although the NLSE can already reveal a large number of
conservative periodic nonlinear wave varieties (including the
presented cnoidal waves and their periodic soliton limits), in
an attempt to investigate the light propagation in a femtosec-
ond fiber laser, it is essential to start the exploration of nonlinear
wave propagation with a higher order NLSE (HNLSE) that
could support higher-order stationary periodic solutions such
as “higher-order cnoidal waves.” Compared with the case of
conservative nonlinear structures supported by the standard
NLSE, the impact of higher-order effects reveals unusual pulse
profiles on such periodic wave structures, for instance, having a
“pure square wave” or “bright soliton on top of square wave”
pulse profile [48]. Finally, if the effective gain bandwidth limi-
tation effect of a laser is no longer neglectable, the dissipative
features of the system will play a dominant role. It is expected
that even complicated periodic wave structures could be formed
in the system. In view of the easy realization and stability of the
formed nonlinear periodic waves in an active fiber cavity, it
would be of both fundamental and practical importance to con-
duct comprehensive studies on features of the systems.
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